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Abstract 

We discuss the problem of selectivity estimation for range queries in real metric datasets, 
which include spatial, or dimensional, datasets as a special case. The main contribution of this paper 
is that, surprisingly, many diverse datasets follow a "power law". This is the first analysis of distance 
distributions for metric datasets. 

We named the exponent of our power law as the "Distance Exponent". We show that it 
plays an important role for the analysis of real, metric datasets. Specifically, we show (a) how to use 
it to derive formulas for selectivity estimation of range queries and (b) how to measure it quickly from 
a metric index tree (like an M-tree). 

We do experiments on many real datasets (road intersections of U.S. counties, vectors 
characteristics extracted from face matching systems, distance matrixes) and synthetic datasets 
(Sierpinsky triangle and 2-dimensional line). The experiments show that our selectivity estimation 
formulas are accurate, always being within one standard deviation from the measurements. Moreover, 
that our algorithm to estimate the "distance exponent" gives less than 20% error, while it saves 
orders of magnitude in computation time. 
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1 - Introduction 

Multimedia (MM) systems are becoming increasingly useful in our day-to-day work, learning, leisure, etc., 
and increasingly important in computational environments. So, more and more database specialists are 
interested in supplying new methods and algorithms which can improve the capability to answer queries and 
which allow a better understanding of the embedding information. Multimedia applications typically use a large 
amount of complex data, such as sounds, images and videos. These data types are typically multidimensional 
or non-dimensional. Many other fields manipulate these kinds of data types, for example: Geographic 
information systems (GIS) working with images such as spatial description of cities, roads, or other spatial 
interest points on a 2D map; medical images where the datasets are obtained, for example, from CT or MRI 
scans, and are stated as point matrixes describing the level distribution of each slice obtained [UDUPA_91]; 

satellite images, also work with point matrixes describing the spacial distribution of the scanned objets 
[GONZALES_92]. 

The focus of this work is to estimate the selectivities in similarity queries in metric spaces. The typical 
query is: 'Find all the faces that are within 10 units of difference from a desirable face'. What we want to do 
is to estimate (a) the number of qualifying objects (faces, in the above example) and (b) the number of disk 
accesses required if this data is stored in an index tree. Of course, we are also interested in the selectivities and 
response times for all the other related types of queries (nearest neighbors, spatial joins, etc). Our major 
discovery is an empirical 'power law' that the accumulated distribution function of the distance seem to obey. 

Notice that, selectivity estimation is important in query optimization in a RDBMS to answer 
multidimensional queries [FALOUTSOS_94], and to support data mining and data compression. In fact, there 
is a lot of work on the selectivity and disk access estimation for vector space, as we discuss in the survey 
section. The novelty of this paper is that it is the first to tackle metric spaces and metric index trees. Clearly, 
our work includes the vector spaces as a special case. 

The paper is organized as follows. Section 2 provides some background for the subject, including the 
fW-tree structure. Section 3 states the fundamental observation and defines the concept of distance exponent, 
showing that it holds for a great variety of real data domains. In Section 4, we derive formulas to obtain the 
distance exponent of a given dataset and to estimate the selectivity for range queries. Section 5 presents the 
experimental results on real and synthetic datasets, illustrating the accuracy of our proposed formulas. Section 
6 contains the conclusions of this paper. 

2 - Survey 

Index structures are fundamental tools to enable database systems to efficiently store and retrieve information 
from huge volumes of data. Images, sounds, and video data are typically multidimensional or even non- 
dimensional, corresponding usually to a large portion of the database. Thus, a suitable index structure is 
necessary for such type of data [GAEDE_98]. 

2.1 - Vector Spaces and Spatial Access Methods 

A milestone for the multi-dimensional indexing or spatial access methods (SAM) is the R-Tree proposed by 
Guttman [GUTTMAN_84]. After that, many modifications and improvements of this structure were performed, 
bringing new solutions to the problem of index spacial data [SELLIS-87] [BECKMANN_90] [HELLERSTEIN_95]. 
The family of R-tree structures uses the data by itself to build the tree, i. e., the actual data is splited, using the 
geometric information to do it [PAPADIAS_95]. 



The analysis of index trees has been studied in the literature with regard to n-dimensional spaces. For 
instance, Faloutsos and Kamel [FALOUTSOS_94] [KAMEL_93] presents an analysis of R-trees for D-dimensional 
spaces, using the concept of correlation fractal dimension. 

In multimedia applications it is very common to ask the database to return "all the pictures that are 
similar to this one". But, what is similar? A measurement to quantify similarity needs to be specified. The 
human brain intrinsically has the capability to understand the idea of similarity. However, in multimedia 
applications we need to resolve this problem computationally by storing the data for this kind of query. An 
index structure that organizes the data using the property of the dataset to be a metric space can bring us an 
answer to this question. Typically we extract a set of n features from an object, thus mapping it to a n- 
dimensional point. Then we can use a SAM to handle it. 

The capability to index spatial data is necessary to answer range queries using this idea of similarity. 
Thus, if we could specify a distance method to measure such similarity, and if we could use such distance to 
build an index structure, we certainly could answer range queries, spatial joins [HUANG_97] and nearest 
neighbor queries [ROUSSOPOULOS_95]. However, occasionally we are given only a distance function, but no 
features. For such cases, only metric trees can be used. In the next section we will explain the idea of metric 
spaces as well as the spatial access method chosen (ötf-tree) to evaluate the number of qualifying points for 
range queries. 

2.2 - Metric spaces and the metric tree 

A metric space is a pair, M=(D,cQ, where D is a domain of feature values and d is a metric distance as 
described follows. A distance function d{x,y) for a metric space has to fulfill the following prerequisites: 
symmetry (d(x,y) = <%,*)); non-negativity ( 0 < d{x,y) < °°, x*y and d(x,x) = 0 ) and triangle inequality ( 
d(x,y) < d(x,z) + d(z,y) ). 

An index structure based on distances between objects in a metric space uses the above assumptions. 
Note that, in metric spaces different from Euclidian spaces, we do not use the information about the shape of 
the objects. The shape, texture, pattern, color of the objects and any other characteristics will be extracted, and 
afterwards the objects will be searched using the distance function stated for this kind of object. Thus, the 
distance function will be calculated according to the features extracted from the objects. 

A metric space allows the storage of complex data using feature sets previously extracted from the 
dataset. In this paper we are working on metric spaces, where similarities are measured using a distance 
function. We will explain also how to use a metric index tree, 5^-tree [ClACCIA_97], to characterize a high- 
dimensional dataset, allowing estimation of selectivity for point and range queries. That is, we will be able to 
estimate the search performance on M-Xree. In this paper we are focusing on range queries, but this approach 
can be used for other types of queries, as well as nearest neighbor, spatial joins, etc. 

Interesting metric trees such as mvp-tree (multi-vantage point tree) [B0ZKAYA_97], vp-tree (vantage- 
point [CHIUEH_94] and GNAT [BRIN_95] have been proposed lately.The mvp-tree and the vp-tree are static 
and balanced structures. Both use the concept of vantage points and relative distances to partition the data 
space. The mvp-tree chooses the vantage points and calculates the distances only once, when it is built. This 
approach minimizes the cost for distance calculations when a range query is asked. It was shown that for high- 
dimensional Euclidian vectors, the mvp-tree outperforms the vp-tree, and obtains around a 20-30% gain in 
efficiency [Bozkaya_97]. 

The latest representative of metric trees is the 5W-tree. It is a balanced and dynamic metric tree, which 
is well suited to work with high-dimensional or non-dimensional data. An 5tf-tree partitions the data set based 
on the relative distance of the objects. The objects are stored into fixed-size nodes, which correspond to 
constrained regions of the metric space. A complete description of the 5^-tree is given in [ClACClA_97]. The 
authors also provide an analysis of M-trees in [ClACCIA_98]. However, there is no estimation of the probability 
distribution function of the distances there, which is our major contribution, as we describe in next sections. 
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The fW-tree is built by dividing the data into regions specified by hyper-spheres1. The center of each 
hyper-sphere is an object chosen from the data and it is called a routing object (see below). Such regions can 
also be overlapped or not. An fW-tree can store up to C entries per node. Thus, C is the capacity of the nodes. 
A leaf node has the following format: 

entry(Oj) = [ Ojt aid (Oj), d(Oj, P(Oj) ] 
where: oid (Oj) is the identifier of the object into the database, 0, is the object - the feature values of the object - 
and d(Oj, P(Oj) is the distance between O, and its parent P(Oj). 

An internal node of the M-tree stores a routing object Or and a covering radius r(Or) > 0. The Or 

entry includes a pointer, ptr(T(Or)), that indicates the root of the sub-tree T(Or) - the covering tree of Or. The 
distance from the parent object d(0„ P(Or) is also stored.The internal node of the M-tree has the format: 

entry(Or) = / 0„ ptr (T(OJ), r(Or), d(Or P(Or) ] 
It must be noted that, 

for all objects 0, in the covering 
sub-tree of Or, the distance to 
the routing object Or is less than 
the covering radius, i. e. d(Op 
OJ < r(Or). This premise says 
that it is possible to narrow the 
data set to be searched, using 
the covering radius as a 
measurement of the proximity 
between the data under analysis. 

Figure la - First partitioning of the nodes to build the M-tree (it is not balanced). 
For example, figure 

l(a-b) shows a 2-D construction of a M-tree with fanout = 3 using the Euclidian distance. Figure la shows 
the first step of the algorithm 
that builds a f^-tree as created 
by Ciaccia and Patella, before it 
splits the nodes. At this first 
step, the object A, B, and C are 
selected by the algorithm as 
samples for the sub-trees. To 
simplify the drawing, it is 
assumed that a sample at a 
higher level is also a sample for 
lower levels, i. e. C=C'= C". 
The figure lb shows the real 
5tf-tree built for those elements. For more details about the algorithm to build a fW-tree see [Ciaccia_98]. 
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Figure lb - M-tree built (it is now balanced). 

In Table 1 we summarize all meaningful symbols used in this paper. 

lrrhe actual "shape" of the regions depends on the specific metric space. For example, using: M= (l2, LJ the 
regions are "diamonds", M=(R3, Lz) the regions are "spheres", and M=(K2, LJ the regions are "squares".To 
simplify the comprehension of the ideas in this paper, we are using the Euclidian distance, and the shape of the regions 
of the M-tree as hyper-spheres. 



Symbols 
d(x,y) 

D 

Definitions 
metric distance between objects x and y 
Euclidean dimension 
Distance exponent 

Range query for covering radius r 

«, 

rh 

H 
No 
No„ 
N, 
N M 

DAJr) 
DAJr) 
M^r) 

Effective capacity of a metric-tree node (average number of points stored in a non-root 
node) 
r* node of the metric-tree 
Covering radius of the ^ node of the metric-tree 
Covering radius of a range query qr 

Average covering radius of a leaf node 
Average covering radius of the nodes in the h& level of the tree 
Height of the metric-tree 
Total number of objects in the metric-tree 
number of objects stored in the h"1 level of the metric-tree 
Number of leaf nodes in the metric-tree 
Total number of nodes in the metric-tree 
Number of disk access in the node n, for a range query of radius r 
Number of disk access for all nodes in the metric-tree for a range query of radius r 
Number of disk access for all nodes in an optimal metric-tree for a range query of radius r 

Table 1- Definition of Symbols 

3 - Fundamental Observation: the "Distance Law" 

In this section we explain our proposal, defining the concept of the distance exponent, and showing that it holds 
for a great variety of real data domains. The problem of interest is the distribution of distances between No 
given objects in a metric space for a specific distance r. Is it Gaussian? Is it Poisson? It turns out that, for 
several real and synthetic datasets (see Section 3.2) it follows a power law. 

3.1 - Main Point 

Our goal is to find a formula to estimate the number of neighbors of objects within a given distance r in a set 
of No objects. To make the discussion clearer, we introduce two definitions: 

Definition 1 - The "distance plot" of a metric set is the number os pairs within distance r versus the distance 
r, where both axis are presented in log scale. 

Notice that the distance plot is the "Accumulated Distribution Function" of the probability of a pair 
r 

of objects to be within a distance r, that is    <E(r) = J>(d < r)dr, d = d(x,y), x*y    . Moreover, the 

number of neighbors of an object within a given distance r is    nb=No-®(r) 



Definition 2 - If a distance plot is linear for a range of scales, the slope of the line that best fits the distance 
plot is the distance exponent - &>. 
Using these two definitions, we define the following "Distance Law", which gives an important stepping 

stone towards our goal. 

Distance Law - Given a set of No objects in a metric space with distance function d(x,y), the average number 

of distances less than a radius rfollows a power law, i.e., the average number of neighbors nb(r) 

within a given distance r is proportional to r raised to S? 

Afo • <D(r) = nb(r) <=c /' 

If a dataset presents a metric way to evaluate the distance between any pairs of its objects, then this 
plot can always be drawn, even if it does not have a spatial property. Moreover, we are going to show that this 
distance plot presents an almost linear behavior for a large number of both real as well as synthetic datasets. 

3.2 - Experimental Evidence 

To evaluate the correctness of our proposal, we used a variety of data sets, both from the real world as well as 
synthetic ones. They are described follows: 

Data Set No 
(# Objects) 

Dimension Distance 
Function 

Distance 
Exponent - & 

Real Metric datasets 

English 25143 NA (22*) Lsdit 4.753 

Divina Commedia 12701 NA (15*) '-'Edit 4.827 

Decamerone 18719 NA (19*) Lsdit 5.124 

Portuguese 21473 NA (26*) ^Edit 6.686 

Facelt 516 NA Not divulged 5.301 

Real spatial datasets 
MGCount 15559 2 L2 1.752 

Eigenfaces 11900 16 L2 5.267 

Synthetic datasets 
Sierpinsky 9841 2 U 1.584 

2D Line 20000 2 L2 0.989 

Table 2 - Data sets used in the experiments. 'Corresponds to the length of the longest word. 

• "MGCounty" - a set of geographical data describing the coordinates of the road intersections in the 
Montgomery County - Maryland. The distance function2 used was L2 (Euclidian) and the number of 
objects is 15559 points in a two-dimensional space. 

• "Facelt" - a dataset constructed by a distance matrix given by the Facelt version 2.51, a commercial product 
fromVisionics Corp [VISIONICS_98]. The way the distance function work is unknown. The set of 1056 
faces that generate this distance matrix was given by the Informedia project [WACTLAR_96] at 
Carnegie Mellon University. 

f. 
The Lp distance is defined as L (x, y) = 

Dim. 

l\xUl-yUf 
\ 

J 



• "Eigenfaces" - a set of 11900 face vectors from the Informedia project too. Each face was processed with 
the eigenfaces method [TURK_91], resulting in 16-dimensional vectors.The distance function used was 
L2 over these vectors. 

• "Divina Comedia" and "Decamerone" - two sets of Latin words (used in [ClACClA_99]), with 12701 and 
18719 objects respectively. The distance function used was L 'edit 

• "English" - a set of 25143 objects from the English language dictionary. The distance function used was Ledit. 
• "Portuguese"  - a set of 21473 objects from the Portuguese language dictionary, including accented words. 

The distance function used was Ledir 

• "Sierpinsky" - a synthetic set of 9841 2-dimensional objects from the Sierpinsky triangle. The distance 
function used was L2. 

• "Line2D" - a synthetic set of 20K 2-dimensional objects from the Sierpinsky triangle. The distance function 
used was L,. 
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Figure 2 - Distance Exponent plots of diverse real and synthetic datasets, calculated using 
Log(Total of points within r) versus Log(r). 

LMt or Levenshtein distance of two strings, L^, (x,y), is a metric which counts the minimal number of 
symbols that have to be inserted, deleted, or substituted, to transform x into y (e.g. udu ("head", "hobby") = 4 - three 
substitutions and one insertion). 



Figure 2 shows the distance plots for all these datasets. As we stated in Definition 2 (previous Section), 
the slopes of these lines are the distance exponents - 'SI From Figure 2, we observe the following: 

- all our distance plots are linear for suitable ranges of r scales. 
- it must be noted that the "Facelt" dataset obeys our distance law, even though its distance function 

was not revealed to us. 
Table 2 summarizes the relevant information used o calculate the distance exponent ^ from these 

datasets. 
As different domains of data were used, different procedures to evaluate the distances in each dataset 

were used too. Clearly, the distance plot requires 0(No2) distance computations, where No is the number of 
objects. 

4 - Proposed Formula for Estimation of Disk Accesses for Range Queries 

Our goal here is to obtain a quick way to estimate the number of disk accesses DA needed to answer a range 
query Q^Og, rq) asking for the objects stored in a metric-tree within a given radius rq from the query object oR 

. Of foremost importance, we are devising a formula that can give this estimation from a set of global 
parameters that can be easily retrieved from an already built metric-tree4. Aiming for this goal, we present the 
following Lemma: 

Lemma 1 (Disk accesses for Range Queries): For a range query qr=QR(oR, rq) with a covering radius rq, the 
average number of disk accesses DAJjr) in a given subset o of the set fWof nodes of a metric-tree is given by: 

ZM^-^-l&.-r^f (i) 
ro 

Proof: The volume of a hyper-sphere of dimension D and radius R is KD*R°, where KD is a constant (e.g., 
D=2 - V2=V(Circle)==jr/?2, D=3 =* V3=V(Sphexe)=3A7tR3, etc.). The expected probability Pt(0) of any point 
query q0 to fetch a given node n, can be measured by taking the (hyper-)volume covered by that node divided 
by the overall volume covered by the metric-tree, that is: 

Volume(nf)     KDr}       TJ- D      D 
p,-(0)= •" -■" =^n-=0- (2) 

Volume(n0)    Kßr.D    rD 

We assume that the dataset behaves as a manifold with intrinsic dimensionality ® eE. Thus: 

ro 

Therefore, Eq. 3 can be generalized to predict the average number of disk accesses needed to retrieve 
the node n, by a point query qo=Q.R(oR, 0) in a metric-tree storing a set of points following any non-integer 
dimension 5? 

D4(0)~L (4) 

4 Inside this section, the term metric-tree and tree will be used interchangeably. 

7 



The expected number of disk accesses DAj(0) in any subset a of the set of tree nodes, to answer a point 
query q0, is the sum of the probabilities to access each node in the set a. This is given by: 

*H,(0)«XZW = 4rI>f (5) 
i   r0 r0      i 

where r,- is the covering radius of each node into the subset o. 
A range query of radius r?is equivalent to a point query over a modified metric-tree, where the covering 

radius of each node is enlarged by the query radius rq. The summation of all nodes with enlarged radii (rj+rq) 
on Eq. 5, gives Eq. 1. 

QED 

Lemma 1 enables the calculation of the number of required disk accesses for a range query over the 
whole tree by making o the set of all nodes of the tree. However, as it requires the covering radius r, of each 
node of the tree, it is not a fast way to predict the average disk accesses needed in each query. So a further 
manipulation is needed. 

4.1 - A fast way to predict the average number of disk accesses 

In this section we are going to derive a formula to predict the number of disk accesses for range queries when 
these points are already stored in a metric-tree. Before that, the following definition is needed. 

Definition 3: The effective capacity C^ for the fW-tree nodes is the average number of objects stored in a 
non-root node of the tree. That is, given that each node can hold up to C objects, but has an average 
utilization of u%, the effective capacity C^is: 

^eff  = ^     U 

Considering that: a tree has H levels, the root is at level h=0 and the leaves are at level h=H-, we can 
state the following Lemma. 

Lemma 2:. The number of objects that can be stored in each level of the tree is: 

Noh=Ceff
h+1    ,    h=0,l,...H-l (6) 

Proof: Assuming a tree with fan-out C^ at every node we have Eq. 6. 
QED 

In a metric-tree, each object is copied onto the leaf nodes, even when it is used as a split object in a 
non-leaf node, so that all objects appear in the leaf nodes. That is, considering h=H-l for leaf nodes, 
NoH_x = Nol = No . Then, using Lemma 2 we have: 

Ceff = Nt/H (7) 

We assume that the algorithm to build the metric-tree is 'good', that is: that the number of objects in 
any node is approximately the same, that each node covers the closest objects in each region, and that there is 
a minimum overlap of the covering area between "sibling" nodes at the same level. Given that, we can state the 
following two Lemmas. 



Lemma 3: The average covering radius rh of a node at a level h is given by: 

(8) 

Proof: We start this proof calculating the covering radius of the leaf nodes. Given the total number of objects 
No into the fW-tree, the approximate number of leaf nodes can be expressed as: 

N, = N°/C 
eff 

(9) 

The typical assumption in the analysis of index trees [FALOUTSOS_94] is that the trees are "good", that is, the 
nodes correspond to bounding shapes (rectangles, spheres, etc) that are tight. In our case, the bounding shapes 
are spheres. Let r, be the average radius of the nodes at the leaf level. A distance exponent W implies that our 
set of objects behaves like a manifold of dimensionality W. In that case, the number Nl of spheres of radius r, 
that are required to cover the No objects would be [SCHROEDER_91]: 

Nt = 1/ (10) 

that, combined with Eq. 9, gives the average covering radius of a leaf node as: 
Assuming that the average fan-out of the tree is C^ at every level (Nh=N0h/C^), the same process can 

be used to estimate the average covering radius rh of the nodes in the h* level. 
QED 

r,    =—— = 
No" 

No      No 

1-H 

No H (11) 

Lemma 4: For an optimal metric tree, the total number of disk accesses DAMopj(r) on all nodes of the metric- 
tree which are needed to answer any range queries qr with covering radius r can be estimated as: 

Proof: Lemma 1 gives the predicted number of disk accesses for any sub-set of metric-tree nodes, like the full 
set of nodes or the leaf nodes. Given that, all nodes of each level have the same radius rt ,the summation 
in Lemma 1 turns into a count of the number of nodes in this level. Combining Lemma 1 with Eq. 9 
and Eq. 11, it can estimate the average number of access in leaf nodes of the tree for a query qr: 

1 N, 
DAleave(^) «^X^/ +0 

1 

'0 i=l '0 

No 

'eff 

DAleave(r9)~ W        v 1 
r0     V ) 

'No "  +r 

(13) 

It must be noted that Eq. 13 holds for all levels of the tree but the root, as the root does not always hold 
the average of C^ number of objects. However, calculating the C^ from Eq. 7 spreads this difference to the 
other levels, so a good approximation of the average radii over all H levels can be achieved using all levels, 



(14) 

including the root one. Thus, the total number of disk accesses DAJr) over the nodes in any level h of the tree 
needed to answer any range queries qr with covering radius r can be estimated as: 

DAh(r)**-ä'No" ■  iNo" +r 
r0 V 

Applying this equation over all levels of the tree gives Equation 12. 
QED 

Notice that, if we do not have an optimal metric tree: DAM (r) > DAMo t (r) . 

Lemma 4 represents the predicted number of disk acces ses needed to answer a range query QR(oR, r)=qr 

of a given covering radius r in a metric-tree, given that the distance exponent W is known. It uses only global 
parameters ofthat tree, as no information about each particular node is needed. 

4.2 - Using a metric-tree to predict the distance exponent ^of the stored objects 

Lemma 4 can be used to estimate the average number of disk accesses needed to retrieve the set of objects that 
answer a given range query QR(oR, rq). However, the estimation depends on previous knowledge of the distance 
exponent of the whole set of objects already stored in the tree. As seen, this value can be obtained by calculating 
the distances between all pairs of objects. However, although generic, this is a very time-consuming process 
because it is an 0(No2) algorithm. 

We propose here an alternative way to estimate the distance exponent W of a set of objects stored in 
a metric-tree, using the tree itself. In fact, Eq. 8 holds for all levels of the metric-tree but the root node. That 
is: 

= yNoH 

h   log No 

H   logrh 

(h = l,...,H-l) (15) 

Using this equation, a set of approximate values for the distance exponent W can be retrieved from the 
tree, one for each non-root level of the tree. By averaging this set of values, an approximated value for W, we 

A. 

are calling ® , can be estimated from the tree itself. To obtain this value, the tree must be traversed, 
averaging the value rh in each level of the tree. We have calculated the arithmetic and the geometric average, 

applied over both the average of the individual radii of each node in each level rh measured in all levels of the 

tree, as well as the least squares regression line applied over the whole set of nodes of the tree. We found that 

the arithmetic average of the formula in each level, using the measured radii rh , give the best results. That is: 

7,- h log No 

w= /J=I H l°Srh 
H- -1 

(16) 
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5 - Experimental Results 

We carried out several experiments in order to compare our analytical results with the results given by an M- 
tree. All experiments were run on 450MHz Pentium II machines. They were written in C++ language. In this 
section we describe the results obtained showing that they support our predictions within a good margin of error 
. Interesting observations are discussed following: 

5.1 - The accuracy of distance exponents W and W. 

We can compare the results obtained from the calculation of the distance exponent W and the estimated 

distance exponent W from the Jtf-tree. Table 3 summarizes these results, and we can see that the error margin 
is below 20% for all datasets, and with two exceptions, below 10%. 

Data Set Size 
(# Objects) 

No 

Number 
of Levels 

H 
(M-üee) 

calculated 
distance 
exponent 

estimated distance 
exponent 

(measured from ftf-tree) 

Error 
% 

English 25143 4 4.753 3.979 16 

Divina Commedia 12701 4 4.827 5.134 6 

Decamerone 18719 4 5.123 5.647 10 

Portuguese 21473 5 6.686 6.371 5 

MGCount 15559 3 1.752 1.452 17 

Eigenfaces 11900 4 5.267 4.770 9 

Facelt 1056 3 6.821 6.471 5 

Sierpinsky 9841 3 1.584 1.525 4 

Table 3 - Distance exponents calculated and estimated from the datasets used in the experiments. 

5.2 - The computing time to obtain distance exponents W and W. 

Table 4 shows the computing time measured to calculate the distance exponent W and the estimated distance 

exponent W . It should be noted that if a given application already has the iW-tree built, time needs only to be 

spent obtaining W .The time to obtain W from the fW-tree is too small (from fractions of seconds up to few 
seconds for word datasets) comparing with the computing time to calculate W numerically. 
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Data Set 
Time to build the 94.- 

tree (sect 
Time to obtain W 
from 5l£tree (sec.) 

Time to calculate 
^(sec.) 

English 171.31 1.34 7939.21 
Decamerone 130.73 1.89 2974.16 
Divina Commedia 97.94 2.97 1085.55 
Portuguese 152.50 1.16 8641.57 
MGCount 30.91 0.55 575.98 
Eigenfaces 77.13 0.59 23152.75 
Facelt 12.73 0.04 10653.79 
Sierpinsky 14.53 0.33 84.51 
2D Line 51.87 0.69 305.51 

Table 4- Time (in seconds) needed to obtain distance exponents W and W . 

5.3 - The accuracy of our proposed selectivity formulas. 

Here we compare the results obtained from the measurement of real queries in a M-Xxee with the estimation 
made using Lemma 4. For this measurement, we plot the average disk accesses evaluated from the fW-tree to 
answer 500 queries with each given radius. Figure 3 shows the measurements obtained from the various 
datasets and the respective estimations using both the calculated distance exponent W and the estimated 

distance exponent W , versus the query radius rq. The graphs from Figure 3 are shown in log-log scales. The 

b) 

t   \   \   \   S- 

d) 

nn4 
Legend: DA Measured ± SD 

Radius 

DA for 

Fawlt (1056 points) 

e) 

DA for 2? measured from M-Tree 

Figure 3 - Plots in log-log scale comparing actual number of disk accesses (marked by big dots) inside the standard 

deviation (error bar), with the estimated disk accesses using ^ (dotted line) and estimated disk accesses using W 
(continuous line). 
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solid line represents the average number of disk accesses obtained using the estimated distance exponent W 
and the dotted line represents the average number of disk accesses obtained using distance exponent W. The 
measured disk accesses obtained from the fAf-tree are presented by the big markers within a bar that represents 
the standard-deviation for these data. As we can see in Figure 3, the results for the disk access measurements 
for "Sierpinsky", "Line2D", "MGCounty", "EigenFaces" and "Facelt" datasets follow the prediction of the 
number of disk accesses stated by the proposed formula (Eq. 12). We can see also that the prediction is within 
an error margin of one standard deviation displacement from the points.This is a great result, showing also that 
the fAAree constructed for these datasets are nearly optimal. 

Lemma 4 holds, that is, gives a good approximation, if the metric tree is optimal. Unfortunately, this 
not happened with our word datasets. We conjecture that this is due to the large number of pairs of words within 
the same distance. This leads to a large overlapping of covering radius within the same level, so the number of 
disk accesses needed to answer a given query becomes quite large. In fact, the measurements shown that with 
the words datasets, the fJ^-tree behaves nearly as a sequential scanning. For example, to answer a query asking 
for English words with distance equal to 4 (words must differ by a total of 4 operations - either insertions, 
deletions or substitutions of characters), it needs to 
read an average of 93 % of the nodes. We tried to test English woi* 
this conjecture, changing the distance function Ledit 

mm'\ 
by giving weights to the substitute, insert and delete 
operations, so that the distance function returns a 
broader response domain. Fig. 4 compares the result 
for the "English" dataset. It has two pairs of curves, 
one for the original distance function Ledlt, and the 
other for the modified one. The dashed-dotted line 
represents the number of disk accesses measured 
using the original Ledit distance function, whereas the 
error bars/dots convention represents the number of 
disk accesses measured using the modified LedU. The 
estimated number of disk accesses are shown using 
only the predicted W, both for the original Ledit Radius (Unaar scab) 
distance function in dashed line, and for the modified 
Lou, distance function in solid line. It can be seen Figure 4 - Plot in linear-log scale comparing actual and 
that, when a distance function gives a broader estimated number ofdisk accesses. Actual disk accesses 
domain of distance values, the measurements are are shown for: modified Lm, Distance function(marked by 
u «.    J     *      i u      t A- i J big dots) inside the standard deviation (error bar); and better due to a lesser number of disk accesses, and    r .   , .    ^. „ .       , ,. , , 

,. ,        . ,. , , original LH. Distance. Estimated disk accesses are show 
the predicted number of disk access tends to get usingthepredicted^for: modified ^Distance 
closer the real measurements. The radius axis in this (continuous line). ^ original ^ Distance (dotted line) 

figure is in linear scale, because the queries for 
words are made asking for words with 1, 2, 3... characters in difference, that is, in a linear way. The other 
word-datasets have similar behavior, so they are not shown here. As we can also see, the modified distance 
function for words leads to a better tree. 

From the previous observation, we can notice that the detected problem is due to the distance function 
used, which does not yield the construction of an optimal tree. This indeed shows that our approach becomes 
an effective way to evaluate whether the fW-tree is a good data structure for implementing an index structure 
for a specific dataset domain with a given distance function. Moreover, the presented formulas can also spot 
bad trees: if a tree gives a performance that is worse than our predicted disk accesses, we can suspect that the 
tree is sub-optimal. This occurs with the word datasets. 

DA MMH4 fa OrtaU Z~ 
nn iriiiMiiiii»fr| ii T«—■ »■ ■uMiiii r_ 
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6 - Conclusions 

This paper focuses on selectivity estimations for metric datasets. To the best of our knowledge, this is the first 
and only attempt on modeling the probability density function (PDF) of the distances. Our major contribution 
is the 'Distance Law', an empirical power law that holds for the PDF of surprisingly many real datasets. The 
exponent of our power law, the 'distance exponent', is the key to solve the selectivity estimation problems that 
motivated this work. Additional contributions are: 

• the derivation of formulas that estimate the number of disk accesses for an optimal metric tree. These 
formulas use the distance exponent W, and they hold for metric and vector datasets alike. Our formulas 
are useful for query optimization, as well as for identifying sub-optimally constructed index trees. 

• a fast algorithm to compute the distance exponent, from a given (metric) index tree. Our algorithm gives 
accurate estimates, for a fraction of the time that a naive algorithm would need. 

• experiments on real datasets, illustrating the accuracy of our 'Law', as well as the accuracy of our disk 
access formulas. Excluding degenerate, sub-optimal trees, our estimation formulas are always within 
one standard deviation from the measurements. 

Future work could further explore the use of our 'Distance Law' and the distance exponent, to analyze 
nearest neighbor queries [ROUSSOPOULOS_95], all-pairs queries and so on, on metric datasets. 
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